Introduction

presto makes it fast and easy to run Wilcoxon rank sum test and auROC analysis on large datasets. The tutorial below shows how to install presto, walks through the 3 major ways you can use presto with your data, and finally explores more advanced use cases.

Installation

To install the current stable release from CRAN:

For the cutting edge version of presto:

library(devtools)
install_github('immunogenomics/presto')

Input Types

The main function in this vignette is wilcoxauc. presto currently supports 3 interfaces to wilcoxauc, with a matrix, Seurat object, or SingleCellExperiment object. The output of wilcoxauc is described in the next section.

Matrix input

The most general use of presto is with a matrix of features and observations (exprs) paired with a vector of group labels (y).

data(exprs)
head(exprs)[, 1:10]
##    X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
## G1  0  1  1  2  1  1  1  2  0   1
## G2  1  0  2  2  0  1  1  1  0   0
## G3  1  1  1  1  0  0  0  2  1   0
## G4  2  2  0  2  4  0  1  1  0   1
## G5  0  0  0  3  1  1  1  2  0   2
## G6  2  1  0  1  0  1  0  0  1   0
data(y)
head(y)
## [1] A A A A A A
## Levels: A B C
head(wilcoxauc(exprs, y))
##   feature group avgExpr  logFC statistic  auc  pval padj pct_in pct_out
## 1      G1     A    1.15  0.082      2890 0.55 0.257 0.64     75      59
## 2      G2     A    0.76 -0.300      2190 0.42 0.081 0.41     49      65
## 3      G3     A    0.98 -0.187      2429 0.46 0.452 0.75     65      68
## 4      G4     A    1.22  0.397      3176 0.61 0.020 0.41     71      56
## 5      G5     A    1.42  0.366      3026 0.58 0.093 0.41     73      57
## 6      G6     A    0.93 -0.178      2424 0.46 0.439 0.75     56      60

Seurat

We support interfacing with Seurat Version 3 objects. In the most basic use case, specify the Seurat object and the meta data variable that defines the group labels.

data(object_seurat)
# ensure object structure matches with the installed Seurat version
object_seurat <- Seurat::UpdateSeuratObject(object_seurat)
## Validating object structure
## Updating object slots
## Ensuring keys are in the proper structure
## Ensuring feature names don't have underscores or pipes
## Updating slots in RNA
## Updating slots in pca
## Setting assay used for NormalizeData.RNA to RNA
## Setting assay used for FindVariableFeatures.RNA to RNA
## Setting assay used for ScaleData.RNA to RNA
## Setting assay used for RunPCA.RNA to RNA
## Object representation is consistent with the most current Seurat version
head(wilcoxauc(object_seurat, 'cell_type'))
##   feature  group avgExpr   logFC statistic  auc pval padj pct_in pct_out
## 1      G1 jurkat     6.0  0.0406     11343 0.50 0.90 1.00    100     100
## 2      G2 jurkat     5.9 -0.0278     11209 0.50 0.96 1.00    100     100
## 3      G3 jurkat     5.9 -0.0584     10306 0.46 0.21 0.99    100     100
## 4      G4 jurkat     5.9 -0.0597     10859 0.48 0.61 1.00    100     100
## 5      G5 jurkat     6.0 -0.0202     11244 0.50 1.00 1.00    100     100
## 6      G6 jurkat     5.9 -0.0075     11038 0.49 0.78 1.00    100     100

Seurat objects can store multiple assays. The assay used by wilcoxauc can be specified with the seurat_assay argument.

head(wilcoxauc(object_seurat, 'cell_type', seurat_assay = 'RNA'))
##   feature  group avgExpr   logFC statistic  auc pval padj pct_in pct_out
## 1      G1 jurkat     6.0  0.0406     11343 0.50 0.90 1.00    100     100
## 2      G2 jurkat     5.9 -0.0278     11209 0.50 0.96 1.00    100     100
## 3      G3 jurkat     5.9 -0.0584     10306 0.46 0.21 0.99    100     100
## 4      G4 jurkat     5.9 -0.0597     10859 0.48 0.61 1.00    100     100
## 5      G5 jurkat     6.0 -0.0202     11244 0.50 1.00 1.00    100     100
## 6      G6 jurkat     5.9 -0.0075     11038 0.49 0.78 1.00    100     100

Seurat supports multiple feature expression matrices, such as raw counts, library normalized data, and scaled data. These can be accessed with assay.

head(wilcoxauc(object_seurat, 'cell_type', assay = 'counts'))
##   feature  group avgExpr   logFC statistic  auc pval padj pct_in pct_out
## 1      G1 jurkat    0.51  0.0046     11385 0.51 0.85 0.97    100     100
## 2      G2 jurkat    0.52 -0.0032     11221 0.50 0.97 0.97    100     100
## 3      G3 jurkat    0.48 -0.0373     10398 0.46 0.26 0.97    100     100
## 4      G4 jurkat    0.51 -0.0172     10865 0.48 0.61 0.97    100     100
## 5      G5 jurkat    0.51  0.0015     11301 0.50 0.94 0.97    100     100
## 6      G6 jurkat    0.50 -0.0065     11137 0.50 0.89 0.97    100     100
head(wilcoxauc(object_seurat, 'cell_type', assay = 'data'))
##   feature  group avgExpr   logFC statistic  auc pval padj pct_in pct_out
## 1      G1 jurkat     6.0  0.0406     11343 0.50 0.90 1.00    100     100
## 2      G2 jurkat     5.9 -0.0278     11209 0.50 0.96 1.00    100     100
## 3      G3 jurkat     5.9 -0.0584     10306 0.46 0.21 0.99    100     100
## 4      G4 jurkat     5.9 -0.0597     10859 0.48 0.61 1.00    100     100
## 5      G5 jurkat     6.0 -0.0202     11244 0.50 1.00 1.00    100     100
## 6      G6 jurkat     5.9 -0.0075     11038 0.49 0.78 1.00    100     100
head(wilcoxauc(object_seurat, 'cell_type', assay = 'scale.data'))
##   feature  group avgExpr   logFC statistic  auc pval padj pct_in pct_out
## 1      G1 jurkat  0.0206  0.0420     11343 0.50 0.90 1.00    100     100
## 2      G2 jurkat -0.0140 -0.0286     11209 0.50 0.96 1.00    100     100
## 3      G3 jurkat -0.0329 -0.0671     10306 0.46 0.21 0.99    100     100
## 4      G4 jurkat -0.0314 -0.0641     10859 0.48 0.61 1.00    100     100
## 5      G5 jurkat -0.0114 -0.0232     11244 0.50 1.00 1.00    100     100
## 6      G6 jurkat -0.0038 -0.0077     11038 0.49 0.78 1.00    100     100

SingleCellExperiment

presto supports the Bioconductor data structure SingleCellExperiment. Again, the most simple use case takes a SingleCellExperiment object and the metadata field with group labels.

data(object_sce)
head(wilcoxauc(object_sce, 'cell_type'))
## Loading required package: SingleCellExperiment
## Loading required package: SummarizedExperiment
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
## 
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
## 
##     colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##     colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##     colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##     colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##     colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##     colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##     colWeightedMeans, colWeightedMedians, colWeightedSds,
##     colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##     rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##     rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##     rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##     rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##     rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##     rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##     rowWeightedSds, rowWeightedVars
## Loading required package: GenomicRanges
## Loading required package: stats4
## Loading required package: BiocGenerics
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##     union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## 
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:data.table':
## 
##     first, second
## The following objects are masked from 'package:base':
## 
##     expand.grid, I, unname
## Loading required package: IRanges
## 
## Attaching package: 'IRanges'
## The following object is masked from 'package:data.table':
## 
##     shift
## Loading required package: GenomeInfoDb
## Loading required package: Biobase
## Welcome to Bioconductor
## 
##     Vignettes contain introductory material; view with
##     'browseVignettes()'. To cite Bioconductor, see
##     'citation("Biobase")', and for packages 'citation("pkgname")'.
## 
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
## 
##     rowMedians
## The following objects are masked from 'package:matrixStats':
## 
##     anyMissing, rowMedians
##   feature  group avgExpr   logFC statistic  auc pval padj pct_in pct_out
## 1      G1 jurkat     6.0  0.0406     11343 0.50 0.90 1.00    100     100
## 2      G2 jurkat     5.9 -0.0278     11209 0.50 0.96 1.00    100     100
## 3      G3 jurkat     5.9 -0.0584     10306 0.46 0.21 0.99    100     100
## 4      G4 jurkat     5.9 -0.0597     10859 0.48 0.61 1.00    100     100
## 5      G5 jurkat     6.0 -0.0202     11244 0.50 1.00 1.00    100     100
## 6      G6 jurkat     5.9 -0.0075     11038 0.49 0.78 1.00    100     100

SingleCellExperiment can have several data slots, such as counts and logcounts. These can be accessed with assay.

head(wilcoxauc(object_sce, 'cell_type', assay = 'counts'))
##   feature  group avgExpr   logFC statistic  auc pval padj pct_in pct_out
## 1      G1 jurkat    0.51  0.0046     11385 0.51 0.85 0.97    100     100
## 2      G2 jurkat    0.52 -0.0032     11221 0.50 0.97 0.97    100     100
## 3      G3 jurkat    0.48 -0.0373     10398 0.46 0.26 0.97    100     100
## 4      G4 jurkat    0.51 -0.0172     10865 0.48 0.61 0.97    100     100
## 5      G5 jurkat    0.51  0.0015     11301 0.50 0.94 0.97    100     100
## 6      G6 jurkat    0.50 -0.0065     11137 0.50 0.89 0.97    100     100
head(wilcoxauc(object_sce, 'cell_type', assay = 'logcounts'))
##   feature  group avgExpr   logFC statistic  auc pval padj pct_in pct_out
## 1      G1 jurkat     6.0  0.0406     11343 0.50 0.90 1.00    100     100
## 2      G2 jurkat     5.9 -0.0278     11209 0.50 0.96 1.00    100     100
## 3      G3 jurkat     5.9 -0.0584     10306 0.46 0.21 0.99    100     100
## 4      G4 jurkat     5.9 -0.0597     10859 0.48 0.61 1.00    100     100
## 5      G5 jurkat     6.0 -0.0202     11244 0.50 1.00 1.00    100     100
## 6      G6 jurkat     5.9 -0.0075     11038 0.49 0.78 1.00    100     100

Description of outputs

Results table

All inputs for wilcoxauc give the same table of results.

parameter description
feature name of feature.
group name of group label.
avgExpr mean value of feature in group.
logFC log fold change between observations in group vs out.
statistic Wilcoxon rank sum U statistic.
auc area under the receiver operator curve.
pval nominal p value, from two-tailed Gaussian approximation of U statistic.
padj Benjamini-Hochberg adjusted p value.
pct_in Percent of observations in the group with non-zero feature value.
pct_out Percent of observations out of the group with non-zero feature value.
head(wilcoxauc(exprs, y))
##   feature group avgExpr  logFC statistic  auc  pval padj pct_in pct_out
## 1      G1     A    1.15  0.082      2890 0.55 0.257 0.64     75      59
## 2      G2     A    0.76 -0.300      2190 0.42 0.081 0.41     49      65
## 3      G3     A    0.98 -0.187      2429 0.46 0.452 0.75     65      68
## 4      G4     A    1.22  0.397      3176 0.61 0.020 0.41     71      56
## 5      G5     A    1.42  0.366      3026 0.58 0.093 0.41     73      57
## 6      G6     A    0.93 -0.178      2424 0.46 0.439 0.75     56      60

Top markers

We often find it helpful to summarize what the most distinguishing features are in each group.

res <- wilcoxauc(exprs, y)
top_markers(res, n = 10)
## # A tibble: 10 × 4
##     rank A     B     C    
##    <int> <chr> <chr> <chr>
##  1     1 G4    G20   G1   
##  2     2 G5    G5    G21  
##  3     3 G9    G15   G6   
##  4     4 G10   G19   G16  
##  5     5 G14   G25   G11  
##  6     6 G1    G10   G7   
##  7     7 G15   G13   G2   
##  8     8 G25   G8    G17  
##  9     9 G8    G24   G12  
## 10    10 G24   G23   G3

We can also filter for some criteria. For instance, the top features must be in at least 70% of all observations within the group. Note that not all groups have 10 markers that meet these criteria.

res <- wilcoxauc(exprs, y)
top_markers(res, n = 10, auc_min = .5, pct_in_min = 70)
## # A tibble: 9 × 4
##    rank A     B     C    
##   <int> <chr> <chr> <chr>
## 1     1 G4    G20   G1   
## 2     2 G5    G5    G21  
## 3     3 G14   G15   G6   
## 4     4 G1    G19   G16  
## 5     5 NA    G25   G11  
## 6     6 NA    G23   G7   
## 7     7 NA    G9    G2   
## 8     8 NA    G14   G12  
## 9     9 NA    NA    G3

Options

Dense vs sparse

presto is optimized for dense and sparse matrix inputs. When possible, use sparse inputs. In our toy dataset, almost 39% of elements are zeros. Thus, it makes sense to cast it as a sparse dgCMatrix and run wilcoxauc on that.

sum(exprs == 0) / prod(dim(exprs))
## [1] 0.39
exprs_sparse <- as(exprs, 'dgCMatrix')
head(wilcoxauc(exprs_sparse, y))
##   feature group avgExpr  logFC statistic  auc  pval padj pct_in pct_out
## 1      G1     A    1.15  0.082      2890 0.55 0.257 0.64     75      59
## 2      G2     A    0.76 -0.300      2190 0.42 0.081 0.41     49      65
## 3      G3     A    0.98 -0.187      2429 0.46 0.452 0.75     65      68
## 4      G4     A    1.22  0.397      3176 0.61 0.020 0.41     71      56
## 5      G5     A    1.42  0.366      3026 0.58 0.093 0.41     73      57
## 6      G6     A    0.93 -0.178      2424 0.46 0.439 0.75     56      60

groups_use

Sometimes, you don’t want to test all groups in the dataset against all other groups. For instance, I want to compare only observations in group ‘A’ to those in group ‘B’. This is achieved with the groups_use argument.

res_AB <- wilcoxauc(exprs, y, groups_use = c('A', 'B'))
head(res_AB)
##   feature group avgExpr  logFC statistic  auc    pval    padj pct_in pct_out
## 1      G1     A    1.15  0.790      1868 0.75 2.4e-06 0.00006     75      29
## 2      G2     A    0.76 -0.081      1184 0.48 6.9e-01 0.79372     49      53
## 3      G3     A    0.98 -0.018      1246 0.50 9.5e-01 0.97606     65      62
## 4      G4     A    1.22  0.240      1413 0.57 2.0e-01 0.44123     71      60
## 5      G5     A    1.42 -0.248      1054 0.43 1.9e-01 0.44123     73      78
## 6      G6     A    0.93  0.438      1521 0.61 3.1e-02 0.14516     56      36
top_markers(res_AB)
## # A tibble: 10 × 3
##     rank A     B    
##    <int> <chr> <chr>
##  1     1 G1    G20  
##  2     2 G21   G19  
##  3     3 G16   G13  
##  4     4 G6    G15  
##  5     5 G11   G5   
##  6     6 G4    G25  
##  7     7 G12   G23  
##  8     8 G17   G18  
##  9     9 G22   G8   
## 10    10 G9    G10