top_markers.Rd
Useful summary of the most distinguishing features in each group.
top_markers(
res,
n = 10,
auc_min = 0,
pval_max = 1,
padj_max = 1,
pct_in_min = 0,
pct_out_max = 100
)
table returned by wilcoxauc() function.
number of markers to find for each.
filter features with auc < auc_min.
filter features with pval > pval_max.
filter features with padj > padj_max.
Minimum percent (0-100) of observations with non-zero entries in group.
Maximum percent (0-100) of observations with non-zero entries out of group.
table with the top n markers for each cluster.
data(exprs)
data(y)
## first, run wilcoxauc
res <- wilcoxauc(exprs, y)
## top 10 markers for each group
## filter for nominally significant (p<0.05) and over-expressed (auc>0.5)
top_markers(res, 10, auc_min = 0.5, pval_max = 0.05)
#> # A tibble: 9 × 4
#> rank A B C
#> <int> <chr> <chr> <chr>
#> 1 1 G4 G20 G1
#> 2 2 NA G5 G21
#> 3 3 NA G15 G6
#> 4 4 NA G19 G16
#> 5 5 NA G25 G11
#> 6 6 NA G10 G7
#> 7 7 NA NA G2
#> 8 8 NA NA G17
#> 9 9 NA NA G12