collapse_counts.Rd
Collapse counts based on multiple categorical metadata columns
collapse_counts(
counts_mat,
meta_data,
varnames,
min_cells_per_group = 0,
keep_n = FALSE,
how = c("sum", "mean")[1]
)
counts matrix where columns represent cells and rows represent features
data.frame containing cell metadata
subset of `meta_data` column names
minimum cells to keep collapsed group
keep or drop the `N` column containing the number of cells in each group. Default is `FALSE`
method of collapsing counts from groups. `sum` or `mean`
m <- matrix(sample.int(8, 100*500, replace=TRUE), nrow=100, ncol=500)
rownames(m) <- paste0("G", 1:100)
colnames(m) <- paste0("C", 1:500)
md1 <- sample(c("a", "b"), 500, replace=TRUE)
md2 <- sample(c("c", "d"), 500, replace=TRUE)
df <- data.frame(md1, md2)
data_collapsed <- collapse_counts(m, df, c("md1", "md2"))
head(data_collapsed$counts_mat)
#> sample_2 sample_1 sample_0 sample_3
#> G1 505 588 531 530
#> G2 535 593 581 542
#> G3 537 623 524 552
#> G4 533 633 601 543
#> G5 520 604 567 531
#> G6 577 612 523 528